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Abstract

In order to study various aspects of fuel cell systems, like a fuel cell propulsion system for transportation, several challenges arise: in actual
real-world operation, as opposed to benchmark tests, the system is subject to a variety of non-stationary and environmental nuisance factors
that are hard to monitor and control; investigating the system’s behavior at the limits of its ranges while avoiding any adverse effects; due to
sensor capabilities and costs, not every relevant variable can be monitored with sufficiently high temporal resolution.

For these reasons, simulation tools are playing a crucial role in the analysis of these system aspects. The first step is therefore to create &
mathematical representation of the system (a model) which can then be embedded into a simulation environment. To this end, a methodology
is needed for the rapid creation of the mathematical representation of a system which is capable of overcoming the hurdles of dynamic and
transient variables.

Usually, knowledge-based modeling a system this complex takes several years to accomplish and still does not take nuisance factors into
account. In contrast, the approach presented here can be finished within a fraction of that time. We propose to employ black-box adaptive
modeling; the key issue in here, selecting an appropriate set of input features, can be solved by either applying iterative wrapper methods,
or by making use of the automatic relevance detection technique that has been developed earlier within the framework of Bayesian neural
networks. These procedures allow to easily scale the complexity of models in order to accommodate different constraints in terms of modeling
effort, sensor availability and cost, and required model accuracy. Our approach can as well be used for the development of diagnostic models
for on- and off-board diagnostics.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction to be used in the development of the next generation of fuel
cell vehicles.

The fuel cell vehiclesindustry is now approaching thetran-  Several fuel cell vehicle manufacturers are currently ap-
sition from a vehicle prototype stage to commercialization. proaching the market with small fuel cell vehicle fleets. One
Therefore, the modeling efforts can now be based on dataof the purposes of these fleets is to give feedback from real
recorded from existing vehicles. These data contain valuableworld operations indicating vehicle performance and com-
information for a post analysis of driving operations, and al- ponent lifetime.
lows for the accumulation of knowledge about these systems The modeling method presented here will enable engi-

neers to address many of the real world interests arising from
* Corresponding author. Tel.: +1 916 375 0377; fax: +1 916 3750378, the deployment of these vehicle fleets. Perhaps the firstaim is
E-mail addresscn74@daimlerchrysler.com (C. Nitsche). to monitor the degradation of these systems over the course
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of their lifespan. Secondly, any unexpected influences on fuel 3. Application to fuel cell vehicles
cell performance and condition, like air pollution or extreme
climate condition, can be investigated. Additionally,itcanbe A fuel cell engine Fig. 1) [1,2] consists, in our case, of
closely monitored if the powertrain’s operating strategies are a PEM fuel cell stack, an air feed using an air compressor,
well tuned, or if they need adjustment to internal and external a hydrogen feed from the hydrogen tanks and an electric
influences. motor which uses the electricity generated by the fuel cell
In order to do such an analysis, rapid modeling concepts (by combining hydrogen and oxygen from the air) to propel
need to be employed that provide powerful tools for the anal- the vehicle.
ysis of the huge amounts of time series data recorded while  The main physical variables to run a fuel cell powertrain
driving the vehicles. Therefore, our method was developed, are the air and hydrogen flow through the stack, the tem-
within the MATLAB software environment, to cover the de- peratures, pressures and humidity of these gases, the output
mands for the analysis of fuel cell powertrain data. current and voltage of the stack and the temperature of the
medium in the stack cooling loop.
In a state of the art fuel cell vehicle, the number of rele-
2. Modeling approach vant signals and parameters easily reaches a count of several
hundreds. Our method discussed here is a powerful tool that
There are several ways to go about creating a mathemat-t is capable of filtering through these hundreds of signals;
ical representation of a physical system. The classical way extracting and analyzing only the signals pertinent to the de-
is to find mathematical formulas to describe every relevant sired model and output.
aspect of the system. The advantage of this method is thatit We used this approach to model several physical signals
offers a deep insight into a system by providing physical and like the output voltage of the fuel cell stack to see how various
causal relationships. Secondly, if the physical system has yetsignals influence it in a dynamic and steady-state manner.
not been built, itis the only possible way, since the black-box Since the fuel cell powertrain operation is highly dynamic,
adaptive modeling described below cannot be applied with- the models of the powertrain have to account for this transient
outempirical measurements. However, this knowledge-basedbehavior.
approach is very labor-intensive; even if a detailed formal-  Another hurdle for the creation of accurate models is the
ization has been found, it is hard to optimize the generally fact that these vehicles are not operated under predefined
large number of parameters; and it is difficult to incorporate load cycles and constant environmental conditions, but are
external nuisance factors into it. driven on the road under varying conditions. This fact is a
In contrast to this knowledge-intensive approach, we can big obstacle for ‘classical’ modeling but can be covered by
restrict our attention to the relation between input and out- our approach.
put variables of individual system components, or the entire  The time series data we use for our analysis gets recorded
system itself. In principle, any representation formalism for from the vehicles controller area network (CAN)-Bus com-
multi-dimensional functions, such as B-splines, classifica- munication network. The CAN-Bus itself gets fed with sev-
tion and regression trees, dynamic Bayes networks (includ- eral signals by the electronic control unit (ECU) which gets
ing Hidden Markov models as a special case), or artificial the signals from the various sensors the vehicle is equipped
neural networks (ANNs) can determine these relationships. with.
When empirical data is available, this ‘black-box’ model- The importance of time dependency is obvious in any
ing approach can be implemented with much less time and physical system, and in particular for a fuel cell system which
effort than an explicit model; while it can accurately sim- is supplied by an air compressor and other components that
ulate and predict the system behavior, its drawback lies in have a measurable response time.
the lack of causal interpretation available to a human domain  In order to model temporal behavior, one natural can-
expert. didate for model representation would be Dynamic Bayes
The modeling method described here belongs to the latterNetworks[3]. However, in existing software packages the
class. Its advantage lies in its automatagid model cre-
ationwith ascalable complexityThe model complexity can

be adjusted according to its purpose. For example, if the

model is designed for an onboard diagnostics device, then

it needs to be very accurate (to be able to compare actual Elactric

to simulated signals), compact (to enable an implementation t Engine
H2

in a limited CPU-performance computer platform) and suf-

ficiently fast (in order to run as a real-time system). On the

other hand, if the model is intended for a simulation environ- Tank
ment on a fast processing computer, then it can be scaled up

to using several hundreds of input signals as well as output
signals. Fig. 1. Block diagram of fuel cell engine.
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ways for expressing non-linear functions are rather restrictedon a set of parametens. These networks can be trained
to keep computability feasible and fast. Hence, we opted using pairs X,t) of input and target outputs; the errgp is
for using artificial neural networks (ANNg}]. Time de- measured as the squared difference between the actual
pendency is realized by the possibility of feeding it not output of the net (summed over all training examples). By
only signal values observed at the current sampling inter- increasing the complexity of the network, we can easily
val, but also those from a fixed size, small historical win- get arbitrarily close to the training data; however, we are
dow (maximum time delay between cause and effect). Thesealso fitting the random errors in this particular selection of
past signals appear to the ANN just the same as the currenexamples, so that the predictive capabilities of the ANN
ones, i.e., time dependency is incorporated in a flat, implicit for new instances can actually degrade. Therefore, it is
way. common to include a regularizer in the error function,
To account for the time response characteristics, virtual such as weight decay, to penalize model complexity. The
signals are created by shifting all input signals to the right on combined objective function to be minimized becomes
the timescale by times its sampling interval, whexas 1, 2, M(w) = aEw + BED, for appropriately chosen hyperpa-
3,4,5,10, 15, 20. Based on a sampling rate of 10 Hz of the rameterse and 8, whereEy is the sum of squares of all
time series, this range allows the ANN to see input signals weightsw.
up to 2 s before the current time stamp. As an alternative to this conventional setting, MacKay
The time series data is usually recorded while driving the [3] developed the framework &ayesian Neural Networks
fuel cell vehicles on the road or while conducting defined which can be exploited in our context. Instead of focusing
drive cycles on a dynamometer. In general, it makes senseon a single best-fit ANN, there is a continuum of models in
that this time series covers the entire dynamic and powerthe weight space, and each possible network has an associ-
range spectrum. For alternate analyses, this series can alsated probability composed of it's a priori probability, and
utilize data from a stationary fuel cell system. the likelihood that the observed training data would have
been produced by it, given Gaussian noise on the output.
In fact, if we assume a prior distribution of the weights that
4. Modeling method using automatic relevance is Gaussian with mean zero, the log likelihood of a param-
detection or wrapper method eter vectorw is proportional toM (w). this interpretationg
turns out to be the inverse of the variance of the weight prior,
In this section, we discuss a method to filter out, from and g the variance of the noise. By making the simplify-
a (possibly very long) list of possible input features, those ing assumption that the distribution of the hyperparameters,
ones that are most relevant for predicting the output behaviorlike that of the weights, is sharply peaked around a single
of the system. This step, which is usually called Heature maximum, their most probable value can be estimated from
Selection problenn the machine learning literatufg], is a the data. For more complex ANNs, we do not have to sup-
key ingredient of system identificati¢@]. While using more pose that the prior distribution is identical for all weights; we
independent input signals can provide valuable information can allow different variances for different classes of them,
to make the prediction more accurate, using the wrong oneseven to each individual one. In this generalization, we can
can also confuse a modeling algorithm and affect the model estimate a separatefor each weight. A low value means
performance. a high standard deviation, i.e., the choice of the weight in-
Our method consists of several parts. It is fully automated fluences the output of the net less significantly. In a con-
(in the MATLAB software environment) and needs the user ventional ANN, due to random correlations irrelevant input
only to specify the available input signals, the desired output features will still have non-zero weight, and will hurt the
signals, the maximum delay time from changes in the input network’s performance. Automatic relevance detection, on
values to changes in the output values, and optionally a de-the other hand, interleaves weight optimization and hyper-
sired model accuracy, i.e., an acceptable error threshold atparameter estimation; therefore, it is more robust to spurious
which the model identification process can be terminated. features, theiw-value will be decreased so as to softly switch
Our method utilizes either the ‘automatic relevance de- them off.
tection’ (ARD)[3] method or the ‘Greedy Wrapper’ method Our method starts the ARDF{g. 2) once to determine
[5] to perform this relevance analysis. The result of this the a-parameter for each input feature. This result is used
analysis is a relevance table, which is a list of a subset to statically sort the features. The algorithm then iteratively
of the input features that are relevant for the prediction adds features from this ordered list and retrains an ANN; the
task at hand, in a model scaled to particular complexity termination criterion can be determined to scale the resulting

constraints. model complexity. For example, the user can provide an error
threshold, below which the model is deemed acceptable. The
4.1. Automatic relevance detection (ARD) error is determined by0-fold cross-validationi.e., out of

the time series data 90% of it is always used for training the
In the traditional view, an artificial neural network is a system and the other 10% is used to feed the ANN in order to
non-linear mapping from an inpyto an outpuy, depending validate its predictability. This is done until all 10% portions
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Output current
model
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Fig. 2. Feature selection using automatic relevance detection.

of the time series data is used for validation. Then a meanapplied in an attempt to improve the ANN’s performance.

error for these runs is calculated. Possible modification operators include adding or discard-
ing an input feature, or changing the number of hidden neu-
4.2. Greedy Wrapper search rons. The method evaluates each individual modified neural

net using cross validation and chooses the one with min-
An alternative to automatic relevance detection is to use imum error. The process continues until no operator can
a Greedy Wrapper methodFif). 3) to determine the best achieve any improvement over the current best model. Al-
suitable input signals for the desired output signal. The al- ternatively, and similarly as in the ARD algorithm, we can
gorithm starts with an empty list of input features. Then, also terminate if the error falls below a user-supplied error
in each iteration a number of modification operators are threshold.
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Fig. 3. Feature selection using Greedy Wrapper approach.

5. Creation of fuel cell system models We define the flow, temperature and pressure of the air
flowing into the stack, the temperature and pressure of the

5.1. Results from the Greedy Wrapper and ARD methods hydrogen gas inside the stack, the temperature of the stack
cooling medium and the electrical current which is drawn

We now want to look deeper into the details of using this from the stack as the input signals. The fuel cell stack voltage

method. For example, we want to study how the various op- gets assigned as the output sigrialtfle ).

erating parameters and the amount of current drawn fromthe  Table 2shows the error improvement table resulting from

fuel cell stack influence the fuel cell stack voltage. The goal the Greedy Wrapper search method (based on data recorded

is therefore to create an accurate model of the fuel cell stack.while driving a standard drive cycle), by utilizing the input
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Table 1 Table 3
Input and output signals for fuel cell system model Relevance table by ARD method
Signal Unit Average Relevance  Signal description
Input error (volt) factor ()
Electrical current: current drawn from fuel cell stack A 7.89 133 Fuel cell stack current
Pressures: air pressure stack inlet, (cathode), hydrogen bar 7.32 134 Fuel cell stack current ¢ 0.1s)
pressure stack inlet (anode) 7.12 286 Fuel cell stack current £ 0.4 s)
Temperatures: cooling water stack outlet, air temperature K 3.11 740 Airflow trough fuel cell stack
stack outlet, hydrogen temperature stack inlet 3.32 801 Airflow trough fuel cell stackt(— 0.1s)
Flow: air flow through stack kght 1.75 877 Cooling water temperature fuel cell stack
outlet ¢ —0.45s)
Output
\oltage: voltage of fuel cell stack at electrical outlet \% 1.18 1043 Hydrogen pressure fuel cell stack (anode)
’ 1.17 1121 Airflow trough fuel cell stackt(— 0.4 s)
0.92 1187 Air temperature stack outlet
0.94 1207 Air pressure fuel cell stack (cathode)
and output signals froriable lincluding the time-shifted (t—0.1s)
virtual input signals. 0.99 1273 Cooling water temperature fuel cell stack

outlett —0.15s)

The input signals are sorted in the order of the degree of :
1.19 1453 Air temperature stack outlet€ 0.4's)

their influence for the smallest possible average error from

: , 0.83 1547 Hydrogen pressure fuel cell stack (anode)

the top of the table to the bottom. The ‘Average Error’ col- (t—0.1s)
umn describes the average error (in volts) of the simulated 0.90 1592 Air pressure fuel cell stack (cathode)
to the actual stack voltage (using 10-fold cross-validation). 0.94 1950 Air pressure fuel cell stack (cathode)
The average error is determined by building a model using (t—0.4s)

. . . . 0.99 1998 Hydrogen pressure fuel cell stack (anode)
only the most important signal from this list, then adding the (t—0.45)
next importgnt one, and so on. .As can be seen from this ta-1 gg 2082 Air temperature stack outlet£ 0.1s)
ble, by adding more and more input signals the error keepsi.09 4117 Cooling water temperature fuel cell stack
decreasing. outlet

Table 3shows the relevance table resulting from the auto-
matic relevance detection method by utilizing the same data
as well as the same input and output signals as for the Greedy Fig. 4shows the overall error for the hidden neuron num-
Wrapper method. ber optimizer (utilizing cross validatiofi%] for the 11 input

The average error was determined by adding one sig-features chosen by the Greedy Wrapper methiadble 2.
nal at a time to the modeling procedure in the order of in- The Greedy Wrapper method employs this optimizer for ev-
creasing relevance factors (the lower the relevance factor, theery new combination of input signals. As can be seen clearly
higher its signal’s relevance). As can be seen clearly from in this figure, for the final selection of 11 features the opti-
Tables 2 and 3both methods lead to about the same opti- mizer found an overall minimum at 13 hidden neurons. The
mum average error (model accuracy). The difference is thatlocal minimum at eight hidden neurons offers a reasonable
the Greedy Wrapper method offers a selection of input sig- tradeoff between the average error and the number of hidden
nals that leads to the smallest error. On the other hand, theneurons (representing the model complexity).

ARD method gives a relevance factor for each input signal.
Therefore by adding more and more signals down the list

from Table 3does not necessarily lead to an ever decreasing
error. 1.1
1.05}
Table 2
Improvement of error using Greedy Wrapper method s at
Average Signal description g
error (volt) utj 0.95
7.26 Fuel cell stack current 25
1.90 Hydrogen pressure fuel cell stack (anode) g 09
1.18 Fuel cell stack current{ 0.1s) z
1.08 Airflow trough fuel cell stackt - 0.1s) 0.85f
1.05 Hydrogen pressure fuel cell stack (anode)@.4 s)
1.00 Air pressure fuel cell stack (cathode) 0.8t 1
0.96 Air temperature stack outlet
0.91 Cpollng water temperature fuel cell stack outlet 0.4 s) 0~752 4 6 8 10 13 17 15 18
0.91 Air pressure fuel cell stack (cathode)-(0.4 s) Niuribeiof Biddei: Matrsiis
0.87 Fuel cell stack current{ 0.4 s) u r : ur
0.83 Cooling water temperature fuel cell stack outlet (.1 s)

Fig. 4. Hidden neuron number optimisation.
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Fig. 5. Modeling with two features. Fig. 6. Modeling with four features.

In comparison, the ARD method is much faster as the
Greedy Wrapper method, since not for every input signal a
trial has to be run and cross validation is not required. How-
ever cross validation might be a better estimator of the predic-
tive potential. Another disadvantage of ARD is the fact that
when fewer input signals are used that the order of signals€ -
in the relevance table might change, because the relevance
values are only approximations.
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5.2. Example for model refinement

Fuel Cell Stack Vol
e
E

The following figures are good examples to show the im-
provement in model accuracy by adding more and more rele-
vant signals (features) to the ANN. Theddt represents the
actual data recorded while driving the car;siin represents

the simulated curve calculated by our model. The closer these u_mu 12 L3 L4 15 L6 L7
curves are to each other, the better the model accuracy. Time
In Fig. 5 the two most relevant signals (froifable 2
were used to model the fuel cell stack voltage. As expected Fig. 7. Modeling with seven features.
the accuracy is very poor.
In the next step the next two features (frdable 2 below U_08

the two initial features have been added to the modeling pro-
cedure. Here you can already see improvement to the model | g7}
accuracy as shown irig. 6.

Further, we added another three features filale 2and % U_osl |
reach the accuracy shownfhig. 7. §
Finally we added the last four features framable 2to a % U_os ]
total of 11 features. As can be seen the accuracy of the actua$
real value and the simulated value match each other very wellg u_o4}
(Fig. 9. =
T U_03 |

6. Example applications

6.1. Extraction of steady-state characteristics from
dynamic data B t2 t3 t 4 t5 t6 t7
Time

As shown in[7] this method can be used to extract sys-
tem characteristics from the fuel cell powertrain that is op- Fig. 8. Modeling with 11 features.
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erated under real world conditions on the streets. Therefore, U-10;
the model can be trained and builtin real-time (e.g. as partof ;o
an onboard diagnostics system), using two modes, one called
training mode, the other called diagnostics mode. u_g

In online training, the model gets adjusted to properly
(within predefined limits) represent the transient behavior of
the powertrain. At certain intervals, the system switches to
diagnostics mode. That means that the model gets detache
from the online signals and is fed a predefined input simulat-
ing a controlled laboratory test of the same powertrain. Since
the polarization curve of the fuel cell is a good indicator of U al
the health of the system, in particular of the degradation over
time, this method can be used to derive the polarization curve, Y2
in a steady-state manner by simulating a slowly rampingup + . . ‘ ‘
(i.e. gas flows and pressures) the fuel cell system as well as 11 12 L3 L4 15 16 17 I8
increasing the current which is drawn from the system. In Fuel Cell Stack Current
Fig. 9you see such a result.

Additionally, one can utilize this simulated polarization
curve to derive the characteristic constants for the polariza-

tion curve formulas such as the activation losses, mass trans- . .
) on the anode and cathode sides, these new conditions can be
fer losses and proton conductivity].

studied using a simulation.

In the experiment shown belowrig. 10, we simulated
higher pressures inside the stack, and this resulted in the po-
In order to study various aspects of fuel cell systems, like larization curve getting shifted towards higher voltage (from

a fuel cell propulsion system for transportation, the problem U_ref to U_hp). We expected this behavior and as explained

arises that some aspects cannot be studied on the system ien page 104/105 ifil], it is mainly caused by increasing
self, either to avoid damage, or because the system is notthe catalyst site occupancy which leads to a reduction in the
accessible for such studies. However, such an analysis can bgathode activation voltage.
safely conducted in a simulation environment. The first step ~ This method allows the engineer to study the effect of how
is, again, to create a mathematical representation of your sysmuch you have to increase the operating pressures to have a
tem (a model) which can then be embedded into a simulation higher system power. At the same time you lose more energy
environment. for producing these higher pressures. This fact leads in gen-
Therefore, building on the framework presented in Section eral to an optimization problem, which can be solved using
6.1 the same approach can be used. The created powertraithis method iteratively with a parasitic energy consumption
model can be fed with certain operating conditions and in comparison.

order to study the effects of i.e. a higher operating pressure
6.3. Modeling of complete system and system

Fuel Cell Stack Voltage

Fig. 10. Upward shift of the polarization curve due to simulating higher
anodic/cathodic pressures.

6.2. Simulation of varying operating conditions

U_10 components

u_e Our approach can easily be utilized to model not only the

Us fuel cell powertrain as a whole but also its subsystems, like
fgfn - the air compressor and electric motor.
§ U7 For the compressor, typical performance charts can be
$ Ue derived using this method. This is very useful to monitor
& degradation of the compressor, as well as to monitor its
3 Y-S behavior under varying external conditions like elevation,
% U4 ambient temperature and pressure, and humidity. For exam-
T ple, if the ambient air density changes, i.e. while driving up

us a mountain road; the compressor has to work harder to get

U2 the same amount of oxygen into the fuel cell system in order

that the same output power can be delivered.
s 12 I3 14 15 16 17 I8
Fuel Cell Stack Current 6.4. Optimization of sensor placement

Fig. 9. Steady-state polarization curve derived from dynamic fuel cell sys- In the past, fuel cell vehicles were more in a prototype

tem model. stage than being a mass producible vehicle. Most of the cur-
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rent fuel cell vehicle manufacturers are now entering the stage  We presented different examples for what this method can
of going into small-scale mass production for their fuel cell be used. First, we show how steady-state characteristics of a
vehicles. Prototype fuel cell vehicles, in general, employ sev- fuel cell system like the polarization curve can be derived
eral sensors and complex control systems. In order to reducdrom dynamic test data. Further, we simulate higher fuel cell
costs and the complexity of these vehicles on the way to com- stack anode/cathode operating pressures and how they influ-
mercialization; itis beneficial that the number of sensors used ence the characteristics of an existing fuel cell system.
is minimized and the control systems are downsized. One major drawback of artificial neural networks is the
Our approach enables engineers to simplify the vehicular lack of physical insight into the systems they represent.
control system through two strategies. First, this method de- However, the method presented here works around this
termines the relevancy of the individual sensor signals amongdrawback by extracting system characteristics by feeding the
the array of installed vehicular sensors. Engineers can use thigartificial neural network with predefined discrete time series
relevance analysis to eliminate sensors, which are not provid-data. This produces characteristic curves displaying the
ing critical data to the control system. Second, this method causal relationships between the input and output signals.
is capable of modeling sensor signals based on other senso€ombining these relationships with an understanding of fun-
data, therefore, creating a ‘virtual’ sensor. If an actual sensor damental scientific principles governing the system gives one
signal can be accurately modeled by using other actual sensoinsight into the dynamics and physical dependencies of the
signals, then this sensor is obsolete and can be removed. system.
The method presented here is a powerful tool for the accel-
erated creation of models of existing systems, whereas these
7. Conclusion models are adjusted in their complexity according to their
purpose.
The method of creating accurate mathematical represen-
tations (models) of an existing physical system (i.e. fuel cell
powertrain) using the methods of feature selection and arti- References
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