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Abstract

In order to study various aspects of fuel cell systems, like a fuel cell propulsion system for transportation, several challenges arise: in actual
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eal-world operation, as opposed to benchmark tests, the system is subject to a variety of non-stationary and environmental nuis
hat are hard to monitor and control; investigating the system’s behavior at the limits of its ranges while avoiding any adverse effe
ensor capabilities and costs, not every relevant variable can be monitored with sufficiently high temporal resolution.
For these reasons, simulation tools are playing a crucial role in the analysis of these system aspects. The first step is therefor
athematical representation of the system (a model) which can then be embedded into a simulation environment. To this end, a m

s needed for the rapid creation of the mathematical representation of a system which is capable of overcoming the hurdles of d
ransient variables.

Usually, knowledge-based modeling a system this complex takes several years to accomplish and still does not take nuisance
ccount. In contrast, the approach presented here can be finished within a fraction of that time. We propose to employ black-b
odeling; the key issue in here, selecting an appropriate set of input features, can be solved by either applying iterative wrappe
r by making use of the automatic relevance detection technique that has been developed earlier within the framework of Baye
etworks. These procedures allow to easily scale the complexity of models in order to accommodate different constraints in terms o
ffort, sensor availability and cost, and required model accuracy. Our approach can as well be used for the development of diagno

or on- and off-board diagnostics.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The fuel cell vehicles industry is now approaching the tran-
ition from a vehicle prototype stage to commercialization.
herefore, the modeling efforts can now be based on data
ecorded from existing vehicles. These data contain valuable
nformation for a post analysis of driving operations, and al-
ows for the accumulation of knowledge about these systems

∗ Corresponding author. Tel.: +1 916 375 0377; fax: +1 916 375 0378.
E-mail address:cn74@daimlerchrysler.com (C. Nitsche).

to be used in the development of the next generation o
cell vehicles.

Several fuel cell vehicle manufacturers are currently
proaching the market with small fuel cell vehicle fleets. O
of the purposes of these fleets is to give feedback from
world operations indicating vehicle performance and c
ponent lifetime.

The modeling method presented here will enable e
neers to address many of the real world interests arising
the deployment of these vehicle fleets. Perhaps the first a
to monitor the degradation of these systems over the c

378-7753/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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of their lifespan. Secondly, any unexpected influences on fuel
cell performance and condition, like air pollution or extreme
climate condition, can be investigated. Additionally, it can be
closely monitored if the powertrain’s operating strategies are
well tuned, or if they need adjustment to internal and external
influences.

In order to do such an analysis, rapid modeling concepts
need to be employed that provide powerful tools for the anal-
ysis of the huge amounts of time series data recorded while
driving the vehicles. Therefore, our method was developed,
within the MATLAB software environment, to cover the de-
mands for the analysis of fuel cell powertrain data.

2. Modeling approach

There are several ways to go about creating a mathemat-
ical representation of a physical system. The classical way
is to find mathematical formulas to describe every relevant
aspect of the system. The advantage of this method is that it
offers a deep insight into a system by providing physical and
causal relationships. Secondly, if the physical system has yet
not been built, it is the only possible way, since the black-box
adaptive modeling described below cannot be applied with-
out empirical measurements. However, this knowledge-based
approach is very labor-intensive; even if a detailed formal-
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3. Application to fuel cell vehicles

A fuel cell engine (Fig. 1) [1,2] consists, in our case, of
a PEM fuel cell stack, an air feed using an air compressor,
a hydrogen feed from the hydrogen tanks and an electric
motor which uses the electricity generated by the fuel cell
(by combining hydrogen and oxygen from the air) to propel
the vehicle.

The main physical variables to run a fuel cell powertrain
are the air and hydrogen flow through the stack, the tem-
peratures, pressures and humidity of these gases, the output
current and voltage of the stack and the temperature of the
medium in the stack cooling loop.

In a state of the art fuel cell vehicle, the number of rele-
vant signals and parameters easily reaches a count of several
hundreds. Our method discussed here is a powerful tool that
it is capable of filtering through these hundreds of signals;
extracting and analyzing only the signals pertinent to the de-
sired model and output.

We used this approach to model several physical signals
like the output voltage of the fuel cell stack to see how various
signals influence it in a dynamic and steady-state manner.
Since the fuel cell powertrain operation is highly dynamic,
the models of the powertrain have to account for this transient
behavior.

Another hurdle for the creation of accurate models is the
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zation has been found, it is hard to optimize the gene
arge number of parameters; and it is difficult to incorpo
xternal nuisance factors into it.

In contrast to this knowledge-intensive approach, we
estrict our attention to the relation between input and
ut variables of individual system components, or the e
ystem itself. In principle, any representation formalism
ulti-dimensional functions, such as B-splines, classi

ion and regression trees, dynamic Bayes networks (in
ng Hidden Markov models as a special case), or artifi
eural networks (ANNs) can determine these relations
hen empirical data is available, this ‘black-box’ mod

ng approach can be implemented with much less time
ffort than an explicit model; while it can accurately s
late and predict the system behavior, its drawback lie

he lack of causal interpretation available to a human do
xpert.

The modeling method described here belongs to the
lass. Its advantage lies in its automatedrapid model cre
tionwith ascalable complexity. The model complexity ca
e adjusted according to its purpose. For example, i
odel is designed for an onboard diagnostics device,

t needs to be very accurate (to be able to compare a
o simulated signals), compact (to enable an implement
n a limited CPU-performance computer platform) and
ciently fast (in order to run as a real-time system). On
ther hand, if the model is intended for a simulation envi
ent on a fast processing computer, then it can be scal

o using several hundreds of input signals as well as o
ignals.
act that these vehicles are not operated under prede
oad cycles and constant environmental conditions, bu
riven on the road under varying conditions. This fact
ig obstacle for ‘classical’ modeling but can be covered
ur approach.

The time series data we use for our analysis gets rec
rom the vehicles controller area network (CAN)-Bus co
unication network. The CAN-Bus itself gets fed with s
ral signals by the electronic control unit (ECU) which g

he signals from the various sensors the vehicle is equ
ith.
The importance of time dependency is obvious in

hysical system, and in particular for a fuel cell system w
s supplied by an air compressor and other component
ave a measurable response time.

In order to model temporal behavior, one natural c
idate for model representation would be Dynamic Ba
etworks[3]. However, in existing software packages

Fig. 1. Block diagram of fuel cell engine.
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ways for expressing non-linear functions are rather restricted
to keep computability feasible and fast. Hence, we opted
for using artificial neural networks (ANNs)[4]. Time de-
pendency is realized by the possibility of feeding it not
only signal values observed at the current sampling inter-
val, but also those from a fixed size, small historical win-
dow (maximum time delay between cause and effect). These
past signals appear to the ANN just the same as the current
ones, i.e., time dependency is incorporated in a flat, implicit
way.

To account for the time response characteristics, virtual
signals are created by shifting all input signals to the right on
the timescale byx times its sampling interval, wherex is 1, 2,
3, 4, 5, 10, 15, 20. Based on a sampling rate of 10 Hz of the
time series, this range allows the ANN to see input signals
up to 2 s before the current time stamp.

The time series data is usually recorded while driving the
fuel cell vehicles on the road or while conducting defined
drive cycles on a dynamometer. In general, it makes sense
that this time series covers the entire dynamic and power
range spectrum. For alternate analyses, this series can also
utilize data from a stationary fuel cell system.

4. Modeling method using automatic relevance
detection or wrapper method
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on a set of parametersw. These networks can be trained
using pairs (x,t) of input and target outputs; the errorED is
measured as the squared difference betweent and the actual
output of the net (summed over all training examples). By
increasing the complexity of the network, we can easily
get arbitrarily close to the training data; however, we are
also fitting the random errors in this particular selection of
examples, so that the predictive capabilities of the ANN
for new instances can actually degrade. Therefore, it is
common to include a regularizer in the error function,
such as weight decay, to penalize model complexity. The
combined objective function to be minimized becomes
M(w) = αEW + βED, for appropriately chosen hyperpa-
rametersα and β, whereEW is the sum of squares of all
weightsw.

As an alternative to this conventional setting, MacKay
[3] developed the framework ofBayesian Neural Networks,
which can be exploited in our context. Instead of focusing
on a single best-fit ANN, there is a continuum of models in
the weight space, and each possible network has an associ-
ated probability composed of it’s a priori probability, and
the likelihood that the observed training data would have
been produced by it, given Gaussian noise on the output.
In fact, if we assume a prior distribution of the weights that
is Gaussian with mean zero, the log likelihood of a param-
eter vectorw is proportional toM(w). this interpretation,α
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In this section, we discuss a method to filter out, fr
(possibly very long) list of possible input features, th

nes that are most relevant for predicting the output beh
f the system. This step, which is usually called theFeature
election problemin the machine learning literature[5], is a
ey ingredient of system identification[6]. While using more
ndependent input signals can provide valuable informa
o make the prediction more accurate, using the wrong
an also confuse a modeling algorithm and affect the m
erformance.

Our method consists of several parts. It is fully autom
in the MATLAB software environment) and needs the u
nly to specify the available input signals, the desired ou
ignals, the maximum delay time from changes in the i
alues to changes in the output values, and optionally
ired model accuracy, i.e., an acceptable error thresho
hich the model identification process can be terminate
Our method utilizes either the ‘automatic relevance

ection’ (ARD)[3] method or the ‘Greedy Wrapper’ meth
5] to perform this relevance analysis. The result of
nalysis is a relevance table, which is a list of a su
f the input features that are relevant for the predic

ask at hand, in a model scaled to particular comple
onstraints.

.1. Automatic relevance detection (ARD)

In the traditional view, an artificial neural network is
on-linear mapping from an inputx to an outputy, depending
urns out to be the inverse of the variance of the weight p
nd β the variance of the noise. By making the simpl

ng assumption that the distribution of the hyperparame
ike that of the weights, is sharply peaked around a si

aximum, their most probable value can be estimated
he data. For more complex ANNs, we do not have to
ose that the prior distribution is identical for all weights;
an allow different variances for different classes of th
ven to each individual one. In this generalization, we
stimate a separateα for each weight. A low value mea
high standard deviation, i.e., the choice of the weigh

uences the output of the net less significantly. In a
entional ANN, due to random correlations irrelevant in
eatures will still have non-zero weight, and will hurt
etwork’s performance. Automatic relevance detection

he other hand, interleaves weight optimization and hy
arameter estimation; therefore, it is more robust to spu

eatures, theirα-value will be decreased so as to softly sw
hem off.

Our method starts the ARD (Fig. 2) once to determin
he α-parameter for each input feature. This result is u
o statically sort the features. The algorithm then iterati
dds features from this ordered list and retrains an ANN

ermination criterion can be determined to scale the resu
odel complexity. For example, the user can provide an

hreshold, below which the model is deemed acceptable
rror is determined by10-fold cross-validation: i.e., out of

he time series data 90% of it is always used for training
ystem and the other 10% is used to feed the ANN in ord
alidate its predictability. This is done until all 10% portio
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Fig. 2. Feature selection using automatic relevance detection.

of the time series data is used for validation. Then a mean
error for these runs is calculated.

4.2. Greedy Wrapper search

An alternative to automatic relevance detection is to use
a Greedy Wrapper method (Fig. 3) to determine the best
suitable input signals for the desired output signal. The al-
gorithm starts with an empty list of input features. Then,
in each iteration a number of modification operators are

applied in an attempt to improve the ANN’s performance.
Possible modification operators include adding or discard-
ing an input feature, or changing the number of hidden neu-
rons. The method evaluates each individual modified neural
net using cross validation and chooses the one with min-
imum error. The process continues until no operator can
achieve any improvement over the current best model. Al-
ternatively, and similarly as in the ARD algorithm, we can
also terminate if the error falls below a user-supplied error
threshold.
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Fig. 3. Feature selection using Greedy Wrapper approach.

5. Creation of fuel cell system models

5.1. Results from the Greedy Wrapper and ARD methods

We now want to look deeper into the details of using this
method. For example, we want to study how the various op-
erating parameters and the amount of current drawn from the
fuel cell stack influence the fuel cell stack voltage. The goal
is therefore to create an accurate model of the fuel cell stack.

We define the flow, temperature and pressure of the air
flowing into the stack, the temperature and pressure of the
hydrogen gas inside the stack, the temperature of the stack
cooling medium and the electrical current which is drawn
from the stack as the input signals. The fuel cell stack voltage
gets assigned as the output signal (Table 1).

Table 2shows the error improvement table resulting from
the Greedy Wrapper search method (based on data recorded
while driving a standard drive cycle), by utilizing the input
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Table 1
Input and output signals for fuel cell system model

Signal Unit

Input
Electrical current: current drawn from fuel cell stack A
Pressures: air pressure stack inlet, (cathode), hydrogen

pressure stack inlet (anode)
bar

Temperatures: cooling water stack outlet, air temperature
stack outlet, hydrogen temperature stack inlet

K

Flow: air flow through stack kg h−1

Output
Voltage: voltage of fuel cell stack at electrical outlet V

and output signals fromTable 1including the time-shifted
virtual input signals.

The input signals are sorted in the order of the degree of
their influence for the smallest possible average error from
the top of the table to the bottom. The ‘Average Error’ col-
umn describes the average error (in volts) of the simulated
to the actual stack voltage (using 10-fold cross-validation).
The average error is determined by building a model using
only the most important signal from this list, then adding the
next important one, and so on. As can be seen from this ta-
ble, by adding more and more input signals the error keeps
decreasing.

Table 3shows the relevance table resulting from the auto-
matic relevance detection method by utilizing the same data
as well as the same input and output signals as for the Greedy
Wrapper method.

The average error was determined by adding one sig-
nal at a time to the modeling procedure in the order of in-
creasing relevance factors (the lower the relevance factor, the
higher its signal’s relevance). As can be seen clearly from
Tables 2 and 3, both methods lead to about the same opti-
mum average error (model accuracy). The difference is that
the Greedy Wrapper method offers a selection of input sig-
nals that leads to the smallest error. On the other hand, the
ARD method gives a relevance factor for each input signal.
Therefore by adding more and more signals down the list
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Table 3
Relevance table by ARD method

Average
error (volt)

Relevance
factor (α)

Signal description

7.89 1.33 Fuel cell stack current
7.32 1.34 Fuel cell stack current (t− 0.1 s)
7.12 2.86 Fuel cell stack current (t− 0.4 s)
3.11 7.40 Airflow trough fuel cell stack
3.32 8.01 Airflow trough fuel cell stack (t− 0.1 s)
1.75 8.77 Cooling water temperature fuel cell stack

outlet (t− 0.4 s)
1.18 10.43 Hydrogen pressure fuel cell stack (anode)
1.17 11.21 Airflow trough fuel cell stack (t− 0.4 s)
0.92 11.87 Air temperature stack outlet
0.94 12.07 Air pressure fuel cell stack (cathode)

(t− 0.1 s)
0.99 12.73 Cooling water temperature fuel cell stack

outlet(t− 0.1 s)
1.19 14.53 Air temperature stack outlet (t− 0.4 s)
0.83 15.47 Hydrogen pressure fuel cell stack (anode)

(t− 0.1 s)
0.90 15.92 Air pressure fuel cell stack (cathode)
0.94 19.50 Air pressure fuel cell stack (cathode)

(t− 0.4 s)
0.99 19.98 Hydrogen pressure fuel cell stack (anode)

(t− 0.4 s)
1.08 20.82 Air temperature stack outlet (t− 0.1 s)
1.09 41.17 Cooling water temperature fuel cell stack

outlet

Fig. 4shows the overall error for the hidden neuron num-
ber optimizer (utilizing cross validation)[5] for the 11 input
features chosen by the Greedy Wrapper method (Table 2).
The Greedy Wrapper method employs this optimizer for ev-
ery new combination of input signals. As can be seen clearly
in this figure, for the final selection of 11 features the opti-
mizer found an overall minimum at 13 hidden neurons. The
local minimum at eight hidden neurons offers a reasonable
tradeoff between the average error and the number of hidden
neurons (representing the model complexity).
rom Table 3does not necessarily lead to an ever decrea
rror.

able 2
mprovement of error using Greedy Wrapper method

verage
rror (volt)

Signal description

.26 Fuel cell stack current

.90 Hydrogen pressure fuel cell stack (anode)

.18 Fuel cell stack current (t− 0.1 s)

.08 Airflow trough fuel cell stack (t− 0.1 s)

.05 Hydrogen pressure fuel cell stack (anode) (t− 0.4 s)

.00 Air pressure fuel cell stack (cathode)

.96 Air temperature stack outlet

.91 Cooling water temperature fuel cell stack outlet (t− 0.4 s)

.91 Air pressure fuel cell stack (cathode) (t− 0.4 s)

.87 Fuel cell stack current (t− 0.4 s)

.83 Cooling water temperature fuel cell stack outlet (t− 0.1 s)

Fig. 4. Hidden neuron number optimisation.
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Fig. 5. Modeling with two features.

In comparison, the ARD method is much faster as the
Greedy Wrapper method, since not for every input signal a
trial has to be run and cross validation is not required. How-
ever cross validation might be a better estimator of the predic-
tive potential. Another disadvantage of ARD is the fact that
when fewer input signals are used that the order of signals
in the relevance table might change, because the relevance
values are only approximations.

5.2. Example for model refinement

The following figures are good examples to show the im-
provement in model accuracy by adding more and more rele-
vant signals (features) to the ANN. The Uact represents the
actual data recorded while driving the car; Usim represents
the simulated curve calculated by our model. The closer these
curves are to each other, the better the model accuracy.

In Fig. 5 the two most relevant signals (fromTable 2)
were used to model the fuel cell stack voltage. As expected
the accuracy is very poor.

In the next step the next two features (fromTable 2) below
the two initial features have been added to the modeling pro-
cedure. Here you can already see improvement to the model
accuracy as shown inFig. 6.

Further, we added another three features fromTable 2and
reach the accuracy shown inFig. 7.
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Fig. 6. Modeling with four features.

Fig. 7. Modeling with seven features.

Fig. 8. Modeling with 11 features.
Finally we added the last four features fromTable 2to a
otal of 11 features. As can be seen the accuracy of the a
eal value and the simulated value match each other very
Fig. 8).

. Example applications

.1. Extraction of steady-state characteristics from
ynamic data

As shown in[7] this method can be used to extract s
em characteristics from the fuel cell powertrain that is
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erated under real world conditions on the streets. Therefore,
the model can be trained and built in real-time (e.g. as part of
an onboard diagnostics system), using two modes, one called
training mode, the other called diagnostics mode.

In online training, the model gets adjusted to properly
(within predefined limits) represent the transient behavior of
the powertrain. At certain intervals, the system switches to
diagnostics mode. That means that the model gets detached
from the online signals and is fed a predefined input simulat-
ing a controlled laboratory test of the same powertrain. Since
the polarization curve of the fuel cell is a good indicator of
the health of the system, in particular of the degradation over
time, this method can be used to derive the polarization curve,
in a steady-state manner by simulating a slowly ramping up
(i.e. gas flows and pressures) the fuel cell system as well as
increasing the current which is drawn from the system. In
Fig. 9you see such a result.

Additionally, one can utilize this simulated polarization
curve to derive the characteristic constants for the polariza-
tion curve formulas such as the activation losses, mass trans-
fer losses and proton conductivity[1].

6.2. Simulation of varying operating conditions

In order to study various aspects of fuel cell systems, like
a fuel cell propulsion system for transportation, the problem
a tem it-
s is not
a an be
s step
i r sys-
t ation
e

tion
6 ertrain
m d in
o sure

F l sys-
t

Fig. 10. Upward shift of the polarization curve due to simulating higher
anodic/cathodic pressures.

on the anode and cathode sides, these new conditions can be
studied using a simulation.

In the experiment shown below (Fig. 10), we simulated
higher pressures inside the stack, and this resulted in the po-
larization curve getting shifted towards higher voltage (from
U ref to U hp). We expected this behavior and as explained
on page 104/105 in[1], it is mainly caused by increasing
the catalyst site occupancy which leads to a reduction in the
cathode activation voltage.

This method allows the engineer to study the effect of how
much you have to increase the operating pressures to have a
higher system power. At the same time you lose more energy
for producing these higher pressures. This fact leads in gen-
eral to an optimization problem, which can be solved using
this method iteratively with a parasitic energy consumption
comparison.

6.3. Modeling of complete system and system
components

Our approach can easily be utilized to model not only the
fuel cell powertrain as a whole but also its subsystems, like
the air compressor and electric motor.

For the compressor, typical performance charts can be
derived using this method. This is very useful to monitor
degradation of the compressor, as well as to monitor its
b ion,
a xam-
p up
a o get
t rder
t

6

ype
s cur-
rises that some aspects cannot be studied on the sys
elf, either to avoid damage, or because the system
ccessible for such studies. However, such an analysis c
afely conducted in a simulation environment. The first

s, again, to create a mathematical representation of you
em (a model) which can then be embedded into a simul
nvironment.

Therefore, building on the framework presented in Sec
.1 the same approach can be used. The created pow
odel can be fed with certain operating conditions an
rder to study the effects of i.e. a higher operating pres

ig. 9. Steady-state polarization curve derived from dynamic fuel cel
em model.
ehavior under varying external conditions like elevat
mbient temperature and pressure, and humidity. For e
le, if the ambient air density changes, i.e. while driving
mountain road; the compressor has to work harder t

he same amount of oxygen into the fuel cell system in o
hat the same output power can be delivered.

.4. Optimization of sensor placement

In the past, fuel cell vehicles were more in a protot
tage than being a mass producible vehicle. Most of the
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rent fuel cell vehicle manufacturers are now entering the stage
of going into small-scale mass production for their fuel cell
vehicles. Prototype fuel cell vehicles, in general, employ sev-
eral sensors and complex control systems. In order to reduce
costs and the complexity of these vehicles on the way to com-
mercialization; it is beneficial that the number of sensors used
is minimized and the control systems are downsized.

Our approach enables engineers to simplify the vehicular
control system through two strategies. First, this method de-
termines the relevancy of the individual sensor signals among
the array of installed vehicular sensors. Engineers can use this
relevance analysis to eliminate sensors, which are not provid-
ing critical data to the control system. Second, this method
is capable of modeling sensor signals based on other sensor
data, therefore, creating a ‘virtual’ sensor. If an actual sensor
signal can be accurately modeled by using other actual sensor
signals, then this sensor is obsolete and can be removed.

7. Conclusion

The method of creating accurate mathematical represen-
tations (models) of an existing physical system (i.e. fuel cell
powertrain) using the methods of feature selection and arti-
ficial neural networks is a powerful tool for the accelerated
development of enhanced systems.

ture
s t sig-
n rate-
g thod
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lud-
i ess-
m tem
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We presented different examples for what this method can
be used. First, we show how steady-state characteristics of a
fuel cell system like the polarization curve can be derived
from dynamic test data. Further, we simulate higher fuel cell
stack anode/cathode operating pressures and how they influ-
ence the characteristics of an existing fuel cell system.

One major drawback of artificial neural networks is the
lack of physical insight into the systems they represent.
However, the method presented here works around this
drawback by extracting system characteristics by feeding the
artificial neural network with predefined discrete time series
data. This produces characteristic curves displaying the
causal relationships between the input and output signals.
Combining these relationships with an understanding of fun-
damental scientific principles governing the system gives one
insight into the dynamics and physical dependencies of the
system.

The method presented here is a powerful tool for the accel-
erated creation of models of existing systems, whereas these
models are adjusted in their complexity according to their
purpose.
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